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ABSTRACT

Spiral cloud bands dominate tropical cyclones’ appearance in satellite and radar images. It is generally

accepted that at least some of them are vortex Rossby waves that propagate on the radial gradient of mean-

flow-relative vorticity. This study models these features in Fourier and time domains as linear, barotropic,

nondivergent waves on a maintained mean vortex scaled to resemble tropical cyclones. This formulation is

the simplest one imaginable that encompasses the essential rotational dynamics.

The modeled waves are episodically forced by a rotating annular train of sinusoidal vorticity sources and

sinks that crudely represents eyewall convection. Substantial quiescent time intervals separate forced in-

tervals. The waves propagate wave energy predominantly outward and converge angular momentum inward.

Waves’ energy is absorbed as their perturbation vorticity becomes filamented near the outer critical radii

where their Doppler-shifted frequencies and radial group velocities approach zero. The waves can propagate

spatially only in narrow annular waveguides because of their slow tangential phase velocity and the restricted

Rossbywave frequency domain.Although radial shear of themean flowdistorts their velocity field into tightly

wound spirals, their streamfunction and geopotential fields assume the form of elliptical gyres or broad

trailing spirals that do not resemble observed hurricane rainbands.

1. Introduction

Vortex Rossby waves (VRWs; e.g., MacDonald 1968;

Montgomery and Kallenbach 1997) have been plausibly

advanced as an explanation for a subset of spiral bands

in tropical cyclones (TCs)—with some observational and

modeling support. Here we undertake a reexamination of

their essential rotational dynamics in using a barotropic,

nondivergent (BND)model. Our purpose is to articulate a

computationally and conceptually simple perspective on

VRW propagation, responses to forcing, and interactions

with themean vortex.A companion paper (Gonzalez et al.

2015) reexamines vortex motion on a beta plane from

a VRW perspective.

These modeled VRWs have a common, specified

tangential wavenumber and a spectrum of frequencies.

Their intermittent forcing is synthesized using a Fourier

series that represents a sinusoidal vorticity source that

rotates around the storm twice as it ramps up and then

back down to zero. Subsequently, the forcing is zero for

the equivalent of six more rotation periods. The result-

ing VRW wave train is a superposition of steady, ro-

tating components each forced by its Fourier component

of the vorticity source. The evolution of the wave field

thus reflects constructive and destructive interference

among the components. The Fourier forcing is purely

rotational with minimal Gibbs phenomenon and no net

induced axially symmetric vorticity.

Around the eye, observed spiral rainbands rotate

cyclonically at speeds generally slower than that of the

axially symmetric tangential wind. They are elongated

strands of precipitating clouds and convection that tend

to wrap around the vortex. These bands can extend

hundreds of kilometers from the eyewall (Romine and

Wilhelmson 2006). Geometrically they can be repre-

sented as trailing equiangular spirals (Senn and Hiser

1959). Their phases appear to propagate outward as
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they are advected cyclonically downwind by the mean

swirling flow.

MacDonald’s (1968) interpretation that spiral rain-

bands are Rossby waves propagating upstream upon the

negative radial gradient of mean-vortex relative vortic-

ity was analogous to midlatitude Rossby wave propa-

gation on the meridional gradient of planetary vorticity.

The hypothesis was tenable because the spiral bands tilt

upstream, they move more slowly than the mean wind,

and convective cells advect through them. If one con-

tinues the analogy with midlatitude cyclones, they should

transport angular momentum inward and wave energy

outward.

Alternatively, Willoughby (1977, 1978) proposed that

spiral bands are inward-propagating inertia–buoyancy

(IB) waves. Simulated bands in this model exhibited

transport of energy toward the center of the vortex and

outward transport of angular momentum. Waves ex-

cited at the vortex periphery propagated upstream,

against the mean flow (like Rossby waves), and were

advected slowly downstream. If the cyclone was strong

enough (maximum velocity. 50m s21), IB waves could

be Doppler shifted to the Brunt–Väisälä (buoyancy)

frequency N. At this IB critical radius, which more or

less corresponded to the radius of maximum wind

(RMW), the radial wavenumber became locally infinite

and the waves were absorbed. The work in the 1970s

initially focused on simulation of VRWs but then shifted

to IB waves when the VRW model was unable to sim-

ulate narrow, trailing geopotential spirals that extended

over substantial radial intervals because (we now know)

of VRW’s slow intrinsic phase propagation.

In addition to slower speed, VRW propagation differs

significantly from IB waves because VRWs are confined

to a narrow waveguide enclosed by loci where their

frequencies are Doppler shifted to the local propagation

frequency of a one-dimensional VRW (where their local

radial wavenumber is zero) or to zero frequency, which

defines the VRW critical radius (where their local radial

wavenumber becomes large). For VRWs in the TC core

where vorticity decreases outward, the radius at which

the frequency is Doppler shifted to the one-dimensional

VRW frequency is nearer the center and the critical radius

farther from it, opposite to the arrangement for IB waves.

Guinn and Schubert (1993) analyzed Rossby wave

characteristics and the relationship between spiral bands

and the potential vorticity (PV) field, neglecting fric-

tion and mass sources or sinks in their shallow water,

f-plane PV model. Their waves propagated on a circular,

piecewise-continuous distribution of mean-vortex PV,

such that PV perturbations appeared as undulations of

the boundaries. By analogy with the general circulation,

PV contours assumed sinusoidal wave patterns; centers

of positive and negative PV propagated upwind. In an

outer ‘‘surf zone,’’ where the PVgradients were relatively

weak, the radial group propagation slowed, resulting in

accumulation of wave energy and transfer their PV to the

mean flow.

Shapiro and Montgomery (1993) advanced the asym-

metric balance (AB) approximation as a way to repre-

sent asymmetries in TCs. It is the high-Rossby-number

(Ro) analog to the synoptic-scale quasigeostrophic for-

mulation. The AB approximation, in which the second

time derivative was assumed to be slow compared with

the square of inertia frequency, allowed for balanced-

wind calculations in high-Ro flows. It also allowed for

divergent perturbations, whose radial wavenumber in-

creased with time as wave packets propagated across the

radially shearing mean flow and energy transfers from

the asymmetric flow to the mean vortex.

The Eliassen–Palm theorem (EPT; Eliassen and Palm

1960) was originally developed in a quasigeostrophic

context to describe synoptic-scale flows in geostrophic

and hydrostatic balance. As rederived for the TC case,

the EPT describes variations of radial eddy fluxes of

wave energy and angular momentum that interact with

the mean flow only where the waves are forced or where

they experience critical-surface absorption (Andrews

and McIntyre 1976a,b; Boyd 1976).

Montgomery and Kallenbach (1997) used AB to

compute Wentzel–Kramers–Brillouin (WKB) solutions

for spiral, vorticity-wave structures in both Rankine-like

and continuous vortices. The waves exhibited the same

characteristics that MacDonald (1968) described. The

AB formulation filtered out IB waves.With zero heating

or friction, wave propagation depended entirely upon

conservation of PV. Energy and momentum transferred

from asymmetric PV anomalies to the symmetric mean

flow could force mean-vortex intensity changes over

time (e.g., Montgomery and Enagonio 1998). In the

continuous-vortex wavenumber-1 version of the prob-

lem, the vortex center was displaced and the circula-

tion intensified as an initial wavenumber-1 PV anomaly

wrapped around the vortex in tightly wound spiral

filaments.

Möller and Montgomery (1999, 2000) confirmed

intensification through incorporation of initial PV

anomalies into axially symmetric shallow-water and

three-dimensional baroclinic vortices. A key common

factor in the work of Guinn and Schubert (1993) and

Montgomery and his coauthors was formulation as an

initial-value problem in which a preexisting perturba-

tion with net cyclonic PV evolved dynamically. In

Guinn and Schubert (1993), outward diffusion from the

high-PV core became filamented into spiral bands. In

Montgomery et al.’s work, the net cyclonic part of
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initial PV distribution became incorporated into the

axially symmetric vortex, resulting in mean-flow in-

tensification as the asymmetric PV filamented. Sub-

sequent analyses (Hendricks et al. 2004; Montgomery

et al. 2006) of full-physics numerical simulations ex-

tended the latter paradigm to include convectively

generated PV anomalies.

AB is not strictly applicable for wavenumbers greater

than 1. Wavenumber-2 instabilities do indeed exist

(Terwey and Montgomery 2002); however, their impact

on the vortex is difficult to understand in the AB con-

text. In an alternative to WKB or piecewise continuous

analyses, Willoughby (1978) analyzed continuous trains

of forced IB waves that conserved the tangential wave-

number and rotation frequency with respect to the

ground as they propagated radially. Here we apply this

approach through Fourier synthesis of a spectrum of

intermittently forced VRWs.

The hypothesis that spiral bands are VRWs has ap-

pealing aspects. They are advected downwind as a train

of cyclonic and anticyclonic vortices moving around the

vortex with less than the mean tangential wind speed in

a passband between the one-dimensional VRW fre-

quency and zero frequency. They propagate wave en-

ergy outward, even though their radial phase velocity is

directed inward. If they are excited near the RMW, they

should transport angular momentum inward toward the

locus of forcing and carry wave energy outward toward

the critical radius. Thus, one would expect VRWs ex-

cited in the eyewall to accelerate the flow there and to

decelerate the flow at the critical radius. Somewhat

paradoxically, deceleration at the critical radius in-

creases the vorticity by reducing, or even reversing, the

anticyclonic shear outside the radius of maximum wind.

The waves’ energy is absorbed as their Doppler-shifted

frequencies and group velocities approach zero. There,

cyclonic and anticyclonic vorticity filaments become so

narrow and closely packed that their influences mask

each other in Poisson inversions to obtain the stream-

function or geopotential.

Inner and outer spiral rainbands are distinctive fea-

tures in TC imagery. Numerical simulations seem to link

their properties to VRWs. Extending the synthesis of

Willoughby et al. (1984) and Willoughby (1988), Houze

(2010) categorized observed rainbands as ‘‘distant,’’

‘‘primary,’’ and ‘‘secondary.’’ Distant rainbands form

outside the vortex core, far from the storm center.

Although it may be argued that they are notVRWs since

the mean-flow radial vorticity gradient there is so weak,

Li and Wang (2012) simulated outward-propagating

wavenumber-1 spirals that seemed consistent with VRW

dynamics. The primary rainband is a (predominantly)

azimuthal wavenumber-1 feature, essentially stationary

within the vortex core; however, it is not generally in-

terpreted to be a VRW. Secondary rainbands are tightly

wound spiral bands just outside the eyewall. They are

much smaller than the primary rainband, with VRW-like

radial and azimuthal propagation.

Radar observations show that secondary rainbands

often have properties consistent with VRWs. For ex-

ample, spiral bands of vorticity in Hurricane Olivia

(1994) were located near the 20-km radius. Deep con-

vection in the eyewall may have forced VRWs, leading

to outward energy fluxes and inward momentum fluxes

consistent with the Eliassen–Palm theorem (Reasor

et al. 2000; Black et al. 2002). However, other factors,

such as local vertical shear, could have contributed to

the storm’s intensity changes, and it was not apparent

that the bands alone caused the vortex to spin up. In

another example, reflectivity radar observations during

Hurricane Elena’s (1985) rapid intensification and weak-

ening showed wavenumber-2 spiral bands that propagated

outward while rotating cyclonically more slowly than the

mean flow, consistent with the VRW theory (Corbosiero

et al. 2005, 2006).

Research aircraft data collected in Hurricanes Rita

and Katrina during the Hurricane Rainband and In-

tensity Change Experiment of 2005 (RAINEX; Judt and

Chen 2010) appeared to show VRWs as the intense TCs

experienced secondary eyewall replacements. An outer

PV maximum generated by convective forcing became

pronounced as the eyewall contracted and the secondary

wind maximum developed.

Romine and Wilhelmson (2006) report small-scale

spiral bands that may have stemmed from shearing in-

stability in a numerical simulation of Hurricane Opal

(1995). These waves may have influenced hurricane in-

tensity changes through the transport of angular mo-

mentum into the core, but axially symmetric convection

seems to have been at least equally important. A 24-h

MM5 simulation reproduced formation of spiral bands

observed during the first stage of Hurricane Andrew’s

rapid deepening (Chen and Yau 2001). Analysis of the

latent heat release and PV anomalies suggested that

convectively forced VRWs caused acceleration of the

mean wind in the lower and middle troposphere, both

inside and outside the eyewall, and deceleration in the

upper troposphere above the eyewall (Chen et al. 2003).

Qiu et al. (2010) simulated inward-propagating spiral

rainbands and outward-propagating features inter-

preted to be VRWs. Convection in the spiral bands ex-

cited perturbations that moved PV toward the inner

core of the vortex, while VRWs became elongated

tangentially and compressed radially as they moved

outward. Simultaneously, the primary eyewall shrank

gradually, outer spiral bands shifted inward, and the
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vortex formed an intensifying secondary eyewall. The

secondary eyewall became the new primary eyewall,

which intensified rapidly, ostensibly as a result of the

VRW filamentation. In the interpretation of Qiu et al.

(2010), VRWs accelerated the mean flow in two ways:

by the axisymmetrization process of Montgomery and

Kallenbach (1997) and by enhancement of convective

PV generation near the stagnation radius.

VRW’s role in intensity change has been explored

through initial-value simulations.Martinez et al. (2010a)

initialized a BND vortex with a wavenumber-4 vorticity

asymmetry.Wave angularmomentum transports caused

the mean vortex to accelerate inside its radius of maxi-

mum winds and decelerate outside. A moat of low-

perturbation vorticity amplitude formed between the

vortex core and VRW spirals that had propagated out-

ward to the edge of the mean-flow vorticity skirt,

suggesting a possible mechanism for initiation of outer

eyewalls. Follow-on experiments (Martinez et al. 2010b)

with either an elliptical (wavenumber 2) initial vorticity

distribution on a weak stable vortex or initial random

perturbations on a stronger, barotropically unstable

vortex also predicted strengthening and contraction of

the eyewall wind maximum through wave–mean flow

interactions. Quasimodes (Schecter et al. 2000; Schecter

and Montgomery 2003, 2004) are continuous spectrum

asymmetries that behave much like true eigenmodes.

They were important to intensification of the weaker

vortex. A follow-on study with stable and unstable BND

mean vortices confirmed these results and related for-

mation of long-lasting elliptical eyes to a slowly damped

quasimode (Menelaou et al. 2013). Initialization of a

weak vortex with thermal anomalies in a dry version of

the WRF Model showed that they may have a role in

tropical cyclogenesis (Menelaou and Yau 2014).

Nguyen et al. (2011) argued that TC intensification

proceeds in alternating symmetric and asymmetric epi-

sodes, consistent with Kossin and Eastin (2001). During

the symmetric stage, the eyewall develops a ringlike PV

structure in response to circularly symmetric heating.

Then, barotropic instability develops, leading to re-

distribution of PV. During this asymmetric stage, the

central pressure falls coincident with some weakening of

the maximum wind. Wave momentum transports re-

move the eyewall PV maximum, setting the stage for

renewed symmetric intensification.

In contrast with the vorticity dynamics considered

previously, Nolan and Montgomery (2002) and Nolan

and Grasso (2003) initialized perturbations on sym-

metric vortices as asymmetric and symmetric thermal

anomalies. The adjustment process occurred in two

stages: adjustment to balance and axisymmetrization

of the resulting vorticity perturbation. Asymmetric

thermal perturbations weakened the mean vortex in most

cases, whereas symmetric thermal perturbations strength-

ened it—but only about as much as would be expected

from a balanced response to the heat added. In follow-on

simulations (Nolan et al. 2007), convectively induced wave

momentum fluxes appear to have weakened the vortex.

2. Vortex Rossby wave dynamics

While symmetric heating appears to be the dominant

factor ofTC intensity change, asymmetric heating controlled

by shearing environmental flows or internal dynamics, in-

cluding VRWs, may also be important (Willoughby et al.

2007). As discussed previously, asymmetric convection

can excite Rossby waves that affect vortex development

through eddy fluxes of angular momentum, as can waves

that arise from reversals of the vorticity gradient inside

the RMW that satisfy the necessary condition for baro-

tropic instability (e.g., Kossin et al. 2000). The BND for-

mulation explicitly excludes the RIB resonance between

VRWs and IB waves that can cause both wave trains to

grow (Schecter and Montgomery 2003, 2004).

Here, we examine nondivergent VRWs forced by

imposed vorticity sources and sinks that crudely repre-

sent eyewall convection (Cotto 2012). VRWs’ radial

phase and group velocities can be directed either out-

ward or inward, but, as shown above, their tangential

phase velocity is always directed upstream in a vortex

with outwardly decreasing axially symmetric vorticity.

The phase and group velocities are relatively slow

(,10ms21) in comparisonwith the (;20–50ms21)mean-

flow wind in the vortex core. Thus, they are advected

around the vortex as a wave train of cyclonic and anticy-

clonic vortices that move downstream with somewhat less

than the mean-flow speed. The BND model is the sim-

plest physical system that embodies VRWs’ rotational

dynamics.

The analysis begins with the linearized momentum and

continuity equations in cylindrical coordinates (Fig. 1).

Here, V0(r) is the mean tangential wind; r is radius; l is

azimuth angle (reckoned cyclonically from north); u is

radial perturbation wind, positive outward; y is the tan-

gential perturbation wind, positive cyclonically; f is per-

turbation geopotential; and f0 is the Coriolis parameter:
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where ›/›t1 (V0/r)›/›l is the linearized Lagrangian

derivative, j0 5 2V0/r1 f0 is the inertia parameter,

z0 5 ›V0/›r1V0/r1 f0 is the mean-flow absolute vor-

ticity, and Fr and Fl are the imposed forcing de-

rived from a vector forcing potential A such that

Fr 52r21(›A/›l) and Fl 5 ›A/›r, so that the forcing is

purely rotational.

The vorticity equation is formed by cross differenti-

ating the momentum equations and substituting from

the continuity equation:

�
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›
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The strictly nondivergent flow can be represented

with a streamfunction c such that u52r21(›c/›l) and

y5 ›c/›r:
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Sinusoidal Fourier components with tangential wave-

number n and frequency v are represented in terms of

complex exponentials and radial structure functions

c(r, t, l)5Re[C(r)ei(vt2nl)], where C is a function of r

alone. The unforced left-hand side of (3) simplifies to

obtain the dispersion relation for free waves:
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which may be solved for the local Doppler-shifted fre-

quency V:
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By assuming a convenient functional form for C(r), we

can write the expression forV in terms of tangential and

local radial wavenumbers. For example, expressingC(r)

as a zero-order Hankel function C5H0(krr), where kr
represents the radial wavenumber, yields a locally valid (in

theWKBsense) dispersion relation. Since ›z0/›r andV0 are

functions of r, kr must be a slowly varying function of radius,

V5

�
v2

nV0

r

�
5

�
n

r

›z0
›r

�
�
k2r 1

n2

r2

� . (6)

Since the Doppler-shifted frequency is always negative,

when kr . 0, the phase velocity Cr is inward and the

group velocityCgr is outward; when kr , 0,Cr is outward

and Cgr is inward, as shown in Fig. 2.

The method of Lindzen and Kuo (1969) is well suited

for solving second-order partial differential equations,

like (4), with boundary conditions imposed at both

ends of the domain. Following Willoughby (1977), each

Fourier component is characterized by v, its spatially

constant rotation frequency with respect to the ground.

Thus, the wave pattern rotates with a constant angular

velocity and the Doppler-shifted frequency varies with

radius as the tangential advection changes. For a speci-

fied V0(r), the coefficients in (4) are known. Replacing

the radial derivatives with second-order finite differ-

ences on a 1-km radial grid transforms (4) to a tridiag-

onal algebraic system. The Lindzen–Kuo algorithm

works like a conventional tridiagonal solver. It reduces

the system to lower-diagonal form on an outward pass

and the back substitutes from the vortex periphery to

obtain C at each radial grid point. The algorithm re-

quires boundary conditions at the vortex center and r5
4000km, the outer boundary of the domain. Since these

boundary points lie far outside the VRW waveguide,

C5 0 is appropriate at both ends.

FIG. 1. Vortex-centered cylindrical coordinates with azimuth

reckoned cyclonically from north.
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OnceC(r) is known, a derivation analogous to that for

vorticity, but with reversed order of differentiation,

yields the divergence equation. It is actually a Poisson

equation for the geopotential with forcing that is a

function of C(r). It is readily solved using the Lindzen–

Kuo algorithm.

The Eliassen–Palm relation is an excellent tool for

gaining insight into wave energy and angular momen-

tum fluxes as well as wave–mean flow interactions. The

derivation begins with the linearized tangential mo-

mentum equation written in terms of the tangential

phase speed and tangential wavenumber. Multiplication

by minus the Doppler-shifted tangential rotation speed

times the perturbation tangential wind plus the geo-

potential, simplifying and integrating around the vortex,

so that the exact tangential derivatives vanish, yields

2
Vr

n
huyi1 hufi5 0, or Vrhuyi5 nhufi . (7)

In (7), angle brackets denote integration around a

circle of constant radius to compute radial eddy fluxes.

The product of the Doppler-shifted frequency with the

eddy angular momentum flux equals the product of the

tangential wavenumber with the eddy geopotential flux.

Since for VRWs V, 0, this relation shows that an out-

ward eddy flux of wave energy, hufi. 0, requires an

inward flux of angular momentum, rhuyi, 0.

The propagation of wave energy is naturally away

from the source. The dispersion relation (6) describes

propagating waves in a passband between V 5 0 and

the frequency of a tangentially propagating one-

dimensional VRW, V1D 5 (›z0/›r)(n/r)
21. The radius

at whichV(r1D)5V1D is a turning point of (4), such that

kr(r1D) 5 0, and kr becomes imaginary on the high-

frequency side where jVj. jV1Dj—that is, where V
is more negative than V1D. Beyond the turning point,

the waves’ radial structure is evanescent. For forcing in

the eyewall, energy propagates both inward toward the

turning radius and outward toward the critical radius.

Near the critical radius, at the outer edge of the wave-

guide, where the group velocity is almost zero, the wave-

energy packets stagnate and are eventually absorbed.

At the inner edge of the waveguide, the frequency is

Doppler shifted to V1D. As Fig. 2 shows inward- and

outward-propagating branches of the dispersion relation

meet at the turning point. Thus, the wave energy can

jump from propagating inward, toward the turning

point, to propagating outward, away from it. Generally,

the waves are at least partially reflected, but the details

can depend upon proximity of domain boundaries (e.g.,

the origin) or the presence of other turning points on the

high-frequency side of r1D. The reflected energy prop-

agates outward, back across the RMW to the critical

radius where it, too, is absorbed.

The initially inward-propagating energy packets sup-

port an outward angular momentum flux that is bal-

anced by angular momentum carried by the waves

reflected from the turning radius. The initially outward-

propagating packets carry energy toward the critical

radius and angular momentum toward the locus of forcing.

Thus, there is a divergence of wave energy from the

source, a convergence of wave energy around the criti-

cal radius, a divergence of angular momentum from the

neighborhood of the critical radius, and a convergence of

angular momentum near the RMW. This convergence

intensifies the strongest winds in the eyewall. The present

barotropic, nondivergent model is the simplest one that

captures these rotational dynamics.

The mean tangential wind (Fig. 3a) is based upon that

of Wood et al. (2013). It is a continuous, differentiable

function. As used here, it is formulated somewhat dif-

ferently from Wood et al. (2013). The parameters are

nin, which defines the power-law variation of wind inside

the RMW; nout, which defines the inverse power law

outside the RMW; and L (the same as l of Wood et al.),

which defines the width of the transition across the

RMW. Values used are nin5 1, nout5 0.5, andL5 0.25,

which correspond to roughly to Riehl’s (1963) model of

the steady-state hurricane and represent the inner

structure of observed hurricanes reasonably well. De-

fined in this way, the cyclostrophic relative vorticity (not

shown) would be cyclonic everywhere, so that in the

limit of large radius, a circular path around the vortex

would enclose infinite cyclostrophic relative vorticity.

The absolute vorticity of the gradient wind (Fig. 3b) is

large and spatially uniform inside the radius of maxi-

mum wind. It decreases sharply to less than 1/10 of the

maximum 50km from the center and is comparable with

the Coriolis parameter by 200 km. At larger radii the

relative vorticity is negative so that the circulation based

FIG. 2. Schematic VRW dispersion relation showing Doppler-

shifted frequency as a function of radial wavenumber for different

tangential wavenumbers.
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upon the gradient wind approaches zero in the limit of

large radius.

Within a few hundred kilometers of the vortex center,

the modeled cyclostrophic wind is close to the gradient

wind. The wind used in the VRW model is the gradient

wind as calculated in Willoughby (2011). Although the

cyclostrophic wind has unbounded circulation at arbi-

trarily large radius, it supports computation of a well-

defined pressure wind relation because it specifies the

radial geopotential gradient, with which the gradient

wind is consistent. The circulation theorem implies that

an arbitrarily large path encircling the vortex must

contain zero net gradient-wind vorticity. Thus, beyond

some radius, both the relative vorticity and its radial

gradient must reverse. The latter condition implies the

existence of a second VRW waveguide in the outer part

of the gradient-balance vortex. In this outer waveguide,

VRWs should propagate downstream relative to the

mean flow with very low frequencies.

3. VRW forcing

The wavenumber-2 forcing used here is cyclic with

alternating active and quiescent intervals within a

17 648-s cycle (Fig. 4). While the forcing is active, it ro-

tates with a period of 2206 s. It turns on and remains

active for 4412 s, or two rotation periods equivalent to

one-fourth of the total cycle. This is the active time in

Fig. 4. During the remaining three-fourths of the cycle,

equivalent to six rotation periods, it is quiescent. The

forcing remains off until the beginning of the next cycle.

During this time, the waves propagate within the wave-

guide and ultimately dissipate, returning to the initial

startup configuration by the end of the cycle.

The forcing is represented as a superposition of sinu-

soidal Fourier components (e.g., Churchill 1963). The

harmonics of the complex forcing interfere construc-

tively during the active phase and destructively during

the quiescent phase. Each harmonic has a constant

amplitude, rotation frequency, and relative phase de-

termined by its complex Fourier coefficient. The fre-

quency of the nth harmonic is n times the frequency of

the fundamental. A spectrum of 28 harmonics is ade-

quate to represent the forcing with minimal Gibbs

phenomenon.

The forcing spectrum is composed of harmonics26 to

22. Peak spectral amplitude lies in the eighth harmonic,

which has the specified rotation frequency v8. In the

FIG. 4. Real (solid) and imaginary (dashed) parts of the forcing

time series, for a complete forcing cycle, composed of two rotation

periods when forcing is active and six subsequent rotation periods

when it is quiescent.

FIG. 3. Wood et al. (2013) vortex as implemented here with

50m s21 maximum wind at 25-km radius. (a) The cyclostrophic

wind (dashed) increases linearly with radius inside the eye and

decreases inversely with the square root of radius outside the eye.

The corresponding gradient wind (solid) decreases somewhat more

rapidly so that it has zero circulation at large radius. (b) Absolute

vorticity computed from the gradient wind and Coriolis parameter

at 208N.
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case shown, the eighth harmonic’s frequency is 0.6 of the

orbital frequency of air moving with the wind at the

radius where the forcing is applied. Only harmonics 4–12

contain power levels that contribute significantly to the

wave energy.

Vortex Rossby waves can propagate only when their

Doppler-shifted frequency is within the passband

V1D(r),V(r), 0. Geometrically, the loci of these

Doppler-shifted frequencies delimit a relatively narrow,

annular VRW waveguide (Fig. 5): V1D is the most neg-

ative frequency possible for sinusoidal vorticity waves;

V is well defined outside the waveguide, but the waves

are radially evanescent when V . 0 or V , V1D , 0.

It is possible to make the (for example) wavenumber-2

waveguide reasonably wide by tuning the fundamental

frequency. Harmonics 4, 6, 8, 10, and 12 propagate in a

set of waveguides that extends from a minimum of

14-km radius for the twelfth harmonic to a maximum of

40km for the sixth harmonic (Fig. 5). Locations of the

turning point and critical radii differ for each harmonic.

The waveguide for the eighth harmonic extends from 17

to 33km. Since the frequencies of the higher harmonics

are less negative than those of the lower harmonics, their

critical radii and cut-off frequencies are located closer to

the center. By design, the waveguides are widest for

harmonics 6, 8, and 10. The eighth harmonic can prop-

agate from 17 to 33km for a total waveguide width of

about 16km. The less-negative frequency of the twelfth

harmonic moves the turning radius inward to 14km, but

it also causes the critical radius to lie at 23km. Thus, this

harmonic can propagate in a waveguide only 9km wide.

The fourth harmonic is unusual. Its relatively large

negative frequency places the critical frequency farther

away from the center, at about 53 km. Before it reaches

the critical radius, however, the fourth harmonic en-

counters another turning point at 29 km and then re-

enters the waveguide at 43 km. Thus, this wave is

trapped between two inner turning radii at r 5 20 and

29 km and between the outer turning radius and the

critical radius. The evanescent wave may be able to

‘‘tunnel’’ a small amount of energy into this outer wave-

guide. Since harmonics lower than four have negative

frequencies that are everywhere below V1D, they are

radially evanescent.

4. Wavenumber-2 harmonics

The Fourier-synthesized forcing varies sinusoidally

within an annular domain 10# r# 30 km (Fig. 6) and

reaches its maximum at t 5 2206 s. The streamfunction

and vorticity form the basis for analysis of the wave

properties. The most strongly forced eighth harmonic is

representative. In Fig. 7, the top panels show the radial

structure of the real and imaginary parts of the vorticity

(Fig. 7a) and streamfunction (Fig. 7b). Figure 7c shows

the wave fluxes of angular momentum and energy as

functions of radius. The bottom panels show maps of

vorticity (Fig. 7d) and streamfunction (Fig. 7e) for this

Fourier component. It is important to keep in mind that

the only time variation that any of individual Fourier

FIG. 5. Wavenumber-2 Doppler-shifted frequency as a function

of radius. The solid curve is the most strongly forced eighth har-

monic, and the dashed curves are the less strongly forced fourth,

sixth, tenth, and twelfth harmonics. The remaining solid curves

indicate the one-dimensional VRW Rossby wave frequency and

zero frequency. They are the boundaries of the VRW passband as

functions of radius. The circle and letter F denote the frequency

and center position of the strongest vorticity forcing.

FIG. 6. Fourier-synthesized wavenumber-2 forcing at 2206 s, when

it is strongest.
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FIG. 7. Wavenumber-2, eighth harmonic: (a) real (solid) and imaginary (dashed)

parts of the vorticity, (b) real and imaginary parts of the streamfunction, (c) Eliassen–

Palm fluxes of angular momentum and geopotential, (d) vorticity field, and

(e) streamfunction field. The black circles in (d) and (e)mark theVRWcritical radius

for this component.
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FIG. 8. Fields of complete wavenumber-2 (a),(c),(e),(g) vorticity and (b),(d),(f),(h)

streamfunction at (a),(b) 1800, (c),(d) 3600, (e),(f) 5400, and (g),(h) 7200 s.
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components exhibit is rotation with its specified

frequency.

Since the eighth harmonic is the most strongly

forced, it has the largest amplitude. Its vorticity field is

qualitatively consistent with previous descriptions

(e.g., Montgomery and Kallenbach 1997). It is orga-

nized into teardrop-shaped gyres that line up with the

strongest forcing. Triangular evanescent tails extend

inward beyond the inner waveguide boundary to the

center. In the neighborhood of the critical radius, at

approximately 33 km, the vorticity filaments wrap

tightly around the center. The streamfunction is sig-

nificantly different. It is 1808 out of phase with the

vorticity because the vorticity is the Laplacian of the

streamfunction. Since Poisson solutions represent pow-

erful smoothing, c is much less noisy than the vorticity,

exhibiting more or less elliptical gyres with a hint of

trailing structure and induced irrotational extensions

beyond the critical radius. As expected from the

Eliassen–Palm relation forV, 0, hufi. 0 and rhuyi, 0.

The wave energy and momentum propagate in oppo-

site directions. The radial geopotential flux represents

energy propagating outward with the radial group ve-

locity. Although the angular momentum flux is essen-

tially confined to the waveguide, some energy flux tunnels

outside of it.

The results for all the harmonics are comparable. The

maxima of forcing, vorticity, and streamfunction fall

within the waveguides. By design, the eighth harmonic

number has the widest radial interval. Inside r 5 21–

26 km, the wave momentum fluxes for all harmonics are

convergent so that they act to accelerate the mean flow

inward from the RMW. In the outer part of the wave-

guide, they are divergent. Thus, the wave–mean flow

interaction concentrates angular momentum from the

outer part of the waveguide into the inner part.

5. Complete wavenumber-2 solution

Fourier synthesis of the time evolution of wave-

number-2 vorticity (Fig. 8, left panels) and stream-

function (Fig. 8, right panels) represents snapshots of

the complete cycle at an interval of 1800 s. The forcing

turns on at t 5 0. By 1800 s, the forcing is ramping up,

and teardrop-shaped vorticity anomalies (Fig. 8a) are

aligned with elliptical streamfunction gyres of opposite

sign (Fig. 8b). Vorticity filamentation appears near the

critical radius.

By 3600 s, the vorticity and streamfunction are ap-

proaching their largest amplitude (Figs. 8c and 8d), even

though the forcing has been decreasing for about 1200 s.

The vorticity maximum is located at approximately r 5
22 km, just inside the critical radius. Filamentation

becomes prominent in the neighborhood of the critical

radius. The streamfunction gyres have begun to exhibit a

trailing-spiral structure with substantial induced circu-

lation outside the critical radii of all Fourier compo-

nents. By 5400 s, long after the forcing has stopped, the

vorticity becomes concentrated in filaments near the

critical radius, and the streamfunction around the vortex

center weakens as the wave energy propagates outward

(Figs. 8e and 8f). The streamfunction is organized into

trailing spirals centered on places where vorticity fila-

ments of opposite sign do not overlap. In other places,

where filaments of opposite sign do overlap, they mask

each other in the Poisson inversion so that the stream-

function is much smaller.

Eventually, at 7200 s, strongly filamented vorticity

remains but the streamfunction amplitude has died

away (Figs. 8g and 8h). Vorticity and streamfunction

decrease in amplitude in the vortex core because most

of the wave energy has propagated away. Mathemati-

cally, the Fourier components interfere destructively

there. Near the critical radius, the vorticity anomalies

are very elongated and tightly wound so that vorticity

masking becomes dominant. The net vorticity in the

neighborhood of any point near the critical radius is

now virtually zero, so that net forcing of the Poisson

solution for the streamfunction is weak, resulting in

small amplitude even though significant vorticity is still

present.

The wavenumber-2 results illustrate the relation-

ships among the forcing, streamfunction, geopotential,

and vorticity for the complete Fourier wave train. The

results describe the evolution of streamfunction from

elliptical gyres to trailing spirals and finally to damped

filaments.

FIG. 9. Wavenumber-3 Doppler-shifted frequencies for the fourth,

sixth, eighth, tenth, and twelfth harmonics, plotted as in Fig. 5.
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FIG. 10. Wavenumber-3, eighth harmonic: (a) vorticity radial structures, (b) stream-

function radial structures, (c) wave angular momentum and geopotential fluxes,

(d) vorticity field, and (e) streamfunction field. Circles in (d) and (e) indicate the VRW

critical radius.
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6. Wavenumber-3 and -4 solutions

Wavenumbers 3 and 4 behave somewhat differently

from wavenumber 2 because the Doppler shift becomes

stronger as tangential wavenumber increases. A higher

ratio, 0.85, of frequency at peak amplitude to the orbital

period of the wind yielded the widest possible wave-

guide for wavenumber 3. Nonetheless, only harmonics 6,

8, and 10 have significant radial extent within the Rossby

wave passband (Fig. 9). Thus, the vorticity, stream-

function fields exhibit more gyres confined to a radially

narrower waveguide (Fig. 10). As before, the solutions

exhibit trailing streamfunction spirals. The vorticity is

characterized by wedge-shaped sectors that become fi-

lamented in the neighborhood of the critical radius.

For wavenumber 4, waves rotating with a frequency

equal to 0.85 of the wind’s orbital frequency also have

the widest waveguide, but its width was only a few ki-

lometers. Only harmonics 6 and 8 fall within the VRW

passband (Fig. 11). The eighth harmonic exhibits well-

defined trailing spirals and vorticity filaments near the

critical radius, and the streamfunction exhibits trailing

spirals (Fig. 12). The sixth harmonic (not shown) has a

similar vorticity pattern but is even more confined ra-

dially because much of the forcing lies inward from the

edge of the waveguide so that the propagating VRWs

connect with the forcing largely through radially eva-

nescent perturbations. Its streamfunction and vorticity

gyres are more elliptical.

More rapid filamentation speeds up the time evolution

of higher wavenumbers (Fig. 13). At 1800 s, while the

forcing for wavenumber 4 is still active, the complete-

solution vorticity is a train of radially compressed,

teardrop-shaped eddies that induce inclined elliptical

gyres. As the forcing ramps down at 3600 s, the vorticity

becomes filamented rapidly so that vorticity masking

results in essentially no expression of the vorticity in the

streamfunction.

The results for wavenumbers 3 and 4 differ slightly in

structure. The frequencies needed to attain the widest

possible waveguide become a larger fraction of the winds’

orbital frequency and the widths of the waveguides de-

creasewith increasing tangential wavenumber.Of course,

the number of streamfunction gyres increases for higher

wavenumbers even as the waveguide width decreases

and filamentation acts much more quickly.

In general, wavenumber-2 solutions are most like

observed spiral bands because the waveguide is wider.

The streamfunction exhibits trailing-spiral geometry

during the interval after most of the vorticity has prop-

agated to the outer part of the waveguide but before it

becomes strongly filamented. Wavenumbers 3 and 4 are

so narrowly confined and filamented that they are poor

candidates to represent observed rainbands. On the

other hand, wavenumber 1 should have a much wider

waveguide. Given its interaction with the motion of the

mean vortex, it is an attractive subject for further study.

7. Conclusions

The analyses of vortex Rossby waves (VRWs) in

previous studies were based on WKB models or ideal-

ized piecewise continuous mean flows. Here we use

Fourier synthesis to simulate VRWs excited episodically

by strictly asymmetric vorticity sources in the eyewall of

a barotropic, nondivergent, but otherwise hurricane-like

vortex. The analysis follows the motion and evolution of

the resulting waves as they are advected downstream,

propagate radially, and filament to form trains of cy-

clonic and anticyclonic trailing spirals.

The barotropic, nondivergent model captures much

of the rotational dynamics of these bands and reveals

the evolution of the waves as they propagate radially

and their harmonics interfere constructively or de-

structively. Since there is no net symmetric forcing, it

induces no net cyclonic vorticity directly, but the waves

sustain eddy fluxes that could change the mean vortex

nonlinearly.

Propagating waves can exist only in a frequency

passband between the one-dimensional Rossby wave

frequency and zero Doppler-shifted frequency. Geo-

metrically, this passband defines an annular waveguide

within which the forcing is localized.Waves that initially

propagate inward are Doppler shifted to the one-

dimensional VRW frequency, reflected at the turning

radius, and subsequently propagate outward. Both these

FIG. 11. Wavenumber-4 Doppler-shifted frequencies for the

fourth, sixth, eighth, tenth, and twelfth harmonics, plotted as

in Fig. 5.
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FIG. 12. Wavenumber-4, eighth harmonic: (a) vorticity radial structures, (b) stream-

function radial structures, (c) wave angularmomentum and geopotential fluxes, (d) vorticity

field, and (e) streamfunction field. Circles in (d) and (e) indicate the VRW critical radius.

OCTOBER 2015 COTTO ET AL . 3953



waves and those that initially propagate outward be-

come filamented and are ultimately absorbed when they

reach the outer critical radius.

The waveguide is narrow because the waves’ phase

speeds are slow and the interval 0.V.V1D is nar-

row. Early in the forcing cycle, the streamfunction

forms elliptical gyres centered on the vorticity ex-

trema. The vorticity perturbations that accumulate

near the critical radius stretch into narrow cyclonic

and anticyclonic bands that become filamented as they

wrap around the vortex. The structures of the corre-

sponding streamfunction gyres, however, are pre-

dominantly relatively broad elliptical gyres or trailing

spirals that show less filamentation than the vorticity.

Later, when the vorticity has propagated outward and

become increasingly filamented near the critical ra-

dius, they briefly become trailing spirals centered on

places where filaments of opposite sign do not mask

each other. Ultimately, progressive filamentation masks

nearly all of the vorticity so that the streamfunction am-

plitude becomes small.

As shown in the appendix, a TC-like vortex can sup-

port a quasimode-like feature (Schecter et al. 2000),

composed of a transfinite set of VRWs with near-zero

Doppler-shifted frequencies propagating in narrow,

overlapping annular waveguides outside of the inner

strong mean radial vorticity gradient. When the mean-

flow vorticity decreases outward, these waveguides are

also bounded by inner turning radii and outer critical

radii, such that the waves’ frequencies lie between the

localV1D and zero. In initial-value simulations with time-

marching models, the initial vorticity asymmetry projects

onto this quasimode, is carried downwind, and filaments,

but it cannot propagate far radially. Similarly, initial vor-

ticity that does not project onto any VRW can filament

and strengthen the mean vortex by inward angular mo-

mentum fluxes, as described by Möller and Montgomery

(1999). The forced waves with wavenumbers 2 and

FIG. 13. Fields of complete wavenumber-4 (a),(c) vorticity and (b),(d) streamfunction at (a),(b) 1800 and

(c),(d) 3600 s.
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higher that are modeled here have somewhat wider

waveguides, but they illustrate the challenges that slow

tangential-phase propagation poses to interpretation of

TC rainbands as VRWs. Wavenumber-1 VRWs, which

are much less sensitive to the Doppler shift but are

complicated by interaction with the mean-vortex vortex

translation, may prove to bemore promising candidates.

The foregoing characteristics make it difficult to

identify vortex Rossby waves with observed hurricane

rainbands, other than perhaps some inner rainbands.

Nonetheless, they seem to be a viable mechanism for

feeding vorticity and angular momentum into the bases

of vertical hot towers (e.g., Hendricks et al. 2004;

Montgomery et al. 2006). The wave momentum and

geopotential fluxes are consistent with the Eliassen–

Palm relation. Since the Doppler-shifted frequency is

negative, they are oppositely directed. The computed

waves transport net angular momentum inward and net

wave energy outward. Angular momentum flux di-

vergence near the critical radius decelerates the mean

flow there and angular momentum convergence accel-

erates the mean flow at the locus of forcing. Both the

quasimode and vorticity that do not project onto VRWs

exhibit similar mean-flow interactions. Although vortex

Rossby waves with wavenumbers 2 and higher can ap-

parently influence intensity change, their slow phase

velocity and narrow frequency range limit their effect

to a narrow radial interval outward from the locus of

forcing.
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APPENDIX

Doppler-Shifted Frequency of a Single Quasimode
Component

When treated as an initial-value problem, vorticity

perturbations on a mean vortex can project onto

a countable set of radially propagating VRWs, as sim-

ulated here, onto a dense superposition of VRWs that

we identify with the ‘‘quasimode’’ (e.g., Schecter et al.

2000) or onto nonpropagating vorticity. All of these

phenomena are subject to filamentation that generally

acts to strengthen the mean vortex, but only the first

supports propagation over a significant radial distance.

Outside the eyewall, but close enough to the center for

the cyclostrophic approximation to be valid, the axially

symmetric Wood–White wind profile V0 may be written

the locally as V0(r)5VMAX(RMAX/r)
m, where VMAX is

the TC’s maximumwind that occurs at radiusRMAX, and

m 5 1/2 is an exponent (equivalent to nout in section

2) that defines the profile shape. The relative vorticity

of this profile is z5 (12m)V0/r, and the radial vor-

ticity gradient is ›z/›r5 (12m)›(V0/r)/›r. Thus, the

Doppler-shifted frequency of a one-dimensional VRW

with tangential wavenumber n becomes

V1D5 [(12m)›(V0/r)/›r](n/r)
21 . (A1)

The two-dimensional Doppler-shifted frequency

of a radially and tangentially propagating quasimode

component is V(r) 5 (v 2 nV0/r). V1D 5 V(r1D) de-

fines the highest (i.e., most negative) V for a propa-

gating VRW at r1D, the boundary of the waveguide

closest to the vortex center (Fig. A1). The lowest (least

negative) frequency at the most distant waveguide

boundary occurs whenV(r1D1Dr)5 0, where Dr is the
waveguide width. Since the waveguide is narrow, it is

possible to use a Taylor series to approximate V(r).

Given that v is constant, the Doppler-shifted fre-

quency at the waveguide’s outer (VRW critical radius)

boundary is approximately:

V1D 2 n[›(V0/r)/›r]Dr5 0, (A2)

which simplifies to

Dr5 r1D(12m)/n2 . (A3)

Thus, initial vorticity perturbations in these overlapping

waveguides of the outer vortex where the mean vorticity

gradient is weak andV0/r is small project onto a transfinite

set of VRWs that (in our interpretation) compose the

quasimode (e.g., Schecter et al. 2000). The waveguides’

small widths restrict radial propagation while promoting

filamentation and absorption at their critical radii.

FIG. A1. The radial extent of the waveguide for a quasimode

component as defined by the variation of Doppler-shifted fre-

quency between the one-dimensional VRW frequency and zero

frequency. Two overlapping passbands for nearby rotation fre-

quencies appear in gray.
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The quasimode waveguides become narrower as the

tangential wavenumber increases or as the wind profile

becomes sharper (i.e., as m increases). For m 5 1/2, Dr 5
r1D/2, r1D/8, r1D/18, and r1D/32 for wavenumbers 1–4, re-

spectively. In a Rankine vortex where m 5 1, the wind

varies inversely as radius so that the outer vortex is ir-

rotational. No outer waveguides exist in this case because

both the mean vorticity and its radial gradient are zero.

The insight of Möller and Montgomery (1999) de-

scribes what can happen in an irrotational vortex. The

radial shear of angular velocity distorts the perturba-

tions into trailing spirals. On the convex (downstream)

side of a cyclonic trailing streamfunction spiral, for ex-

ample, radial inflow and faster tangential flow correlate;

whereas on the concave (upstream) side, radial outflow

and slower tangential wind correlate. The result is an

inward eddy flux of angular momentum even though no

VRW propagation occurs. As a practical matter, it may

be difficult to distinguish in observations or full-physics

model results between filamentation of the densely

packed VRWs that compose the quasimode and that of

nonpropagating vorticity that does not project onto

VRWs. In this context it is important to recall that

vorticity filamentation leading to mean-flow accelera-

tion is a property of vorticity, whether or not it projects

onto propagating waves.
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